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Abstract 
The problem of scattering of two-dimensional electrons on a potential in the form of a 

quantum ring and a quantum dot is solved. The problem is addressed as a part of analysis of 
quantum interference effects in semiconductor nanostructures with nontrivial geometry as 
well as for the design of nanoelectronic devices based on them. In contrast to existing works, 
algorithms for solving both stationary and non-stationary Schrödinger equation with arbi-
trary scattering potential are developed here. Analytical and finite-difference methods are 
used, which makes it possible to obtain an arbitrarily accurate solution, with which the pro-
cess of electron scattering on a quantum ring is modeled and visualized. This visualization 
allows us to discover how the shape of the quantum ring affects the angular distribution of 
the scattering amplitude as well as determine the presence of a self-interference of the scat-
tered electron wave function.  
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1 Introduction 
Hybrid systems consisting of a semiconductor quantum well and a layer of quantum dots 

or rings are studied as a part of materials design for electronics and photonics devices, due to 
their photoconductive properties and unique magnetoresistance and carrier transport prop-
erties [1-7]. The examples are, the change of conductivity under illumination, the negative re-
fractive index for certain wavelengths, oscillations of magnetoresistance. Such systems also 
exhibit topological properties that can be controlled by electric and magnetic fields - the 
Aharonov-Bohm effect and other quantum interference effects arising from scattering of elec-
trons on an array of quantum structures in a magnetic field. 

The simulation presented in this work is also carried out for explanation of the results of 
the experimental paper [1], which investigates the electronic and optical properties of hybrid 
systems with quantum rings (Figure 1). The scattering of electrons on quantum rings and 
quantum dots of different shapes is simulated and visualized. The two-dimensional Schrö-
dinger equation for the stationary and non-stationary problem is solved by different methods. 
The square of the modulus of the wave function is constructed for several potential forms, 
and the reduced 2D scattering cross section and the probability current are calculated. To 
perform the calculations and visualize the results (such as wave functions and probability 
currents) original programs were written by the authors, using R and Rust programming lan-
guages. 

Some of the existing scientific works experimentally investigate the properties of arrays of 
quantum rings and dots. The second group of papers studies mainly the calculation of the op-
tical properties of quantum rings when electrons scatter on them in a transverse magnetic 
field [6-8]. Some papers investigate the motion along a channel that splits at a certain point 
to form a ring [9, 10]. 
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The [9] demonstrates the solution of the scattering problem using the finite-difference 
method. The potential was represented in the form of a locally partitioned channel; the main 
task was to investigate two variants of open boundary conditions. 

The work [10] investigates the wave packet scattering. The ring-like channels of various 
shapes were used: circular, rectangular, semicircular. There was also an additional channel 
connecting the ring at two more points. The main task was to study the dependence of the 
wave packet dynamics on the width of the additional channel. 

There are also papers investigating two-dimensional scattering on a rigid disk [11] or 
solving the problem of scattering and searching for energy levels [12, 13]. 

 

 
Figure 1 – Example of a hybrid system consisting of a quantum well and a quantum dot. 

2 Problem statement and methods 
In this paper we study hybrid systems consisting of a semiconductor quantum well and a 

layer of quantum rings or quantum dots. Quantum rings and dots are zero-dimensional struc-
tures, quantum well is two-dimensional. This means that for the scattering problem it is nec-
essary to solve the Schrödinger equation. 

 

 
Figure 2 – Comparison of computational model and experimental structure. 

 
In the usual experimental set up the quantum ring represents a local expansion of the po-

tential well, i.e. it is necessary to consider the three-dimensional motion of particles, which is 
quite difficult to model [1,5]. In our computational model, the change in the depth of the well 
is considered, while the width remains constant, which allows us to solve the two-
dimensional problem. A visual comparison of the two approaches is presented in Figure 2. 
The model is qualitatively consistent with the experiment. Calculation of two-dimensional 
scattering is much easier than three-dimensional scattering, and thanks to this approach it is 
possible to consider many different configurations. 



 
 

The main purpose of this work is to solve and simulate the problem of scattering of elec-
tron flux on a potential in 2D. Two different formulations of this problem are considered. Sta-

tionary (1) and time-dependent one (2), where 𝐻̂ is the Hamiltonian operator. 

𝐻̂ = −
ℏ2

2𝑚
𝛥 + 𝑈  

{
 
 

 
 𝐻̂𝜓(𝑟, 𝜃) = 𝐸𝜓(𝑟, 𝜃), 0 < 𝑟 < ∞,−𝜋 < 𝜃 < 𝜋

|𝜓(0, 𝜃)| < ∞

𝜓(𝑟 → ∞, 𝜃) = 𝑒𝑖𝑘𝑟 cos𝜃 + 𝑓(𝜃)
𝑒𝑖𝑘𝑟

√𝑘𝑟
𝑒𝑖
𝜋
4

 (1) 

where ℏ is Planck's constant, 𝑚 the effective mass of the electron in the quantum well materi-
al, 𝑖 is imaginary unit, 𝛥 is the Laplace operator, (𝑟, 𝜃) are the polar coordinates: radius and 
polar angle, 𝜓(𝑟, 𝜃) is the wave function, 𝑈(𝑟, 𝜃) is the potential function, 𝐸 is the electron en-

ergy, 𝑓(𝜃) is the scattering amplitude. The phase multiplier 𝑒𝑖
𝜋

4  is necessary to agree with the 
optical theorem [11].  

{
 
 

 
 𝑖ℏ

𝜕

𝜕𝑡
𝜓(𝑡, 𝑥, 𝑦) = 𝐻̂𝜓(𝑡, 𝑥, 𝑦)

 0 ≤ 𝑥 ≤ 𝐿𝑥, |𝑦| ≤ 𝐿𝑦
𝜓(0, 𝑥, 𝑦) = 𝜉(𝑥, 𝑦)

𝜓(𝑡, 0, 𝑦) = 𝜓(𝑡, 𝐿𝑥, 𝑦) = 𝜓(𝑡, 𝑥, 𝐿𝑦) = 𝜓(𝑡, 𝑥, −𝐿𝑦) = 0

 (2) 

where 𝑡 – time, 
𝜕

𝜕𝑡
 is the time partial derivative, (𝑥, 𝑦) is the Cartesian coordinates, 𝜉(𝑥, 𝑦) is 

the initial function whose form and meaning we will consider later, 𝐿𝑥, 𝐿𝑦 are the boundaries 

of the computational domain. 
The probability current along the x-axis was calculated using formula (3). The electric 

current density depends on the probability current density, namely: 𝑗𝑒⃗⃗  = 𝑒𝐽 , where 𝑗𝑒⃗⃗   is the 
electric current density. 

𝐽𝑥 =
ℏ

2𝑚𝑖
(𝜓∗

𝜕𝜓

 𝜕𝑥 
− 𝜓

𝜕𝜓∗

 𝜕𝑥 
) (3) 

To solve the stationary problem, at first Born approximation had been considered; in the 
articles found, it was used mainly to solve the inverse scattering problems. 

However this method is not suitable in the present case because of the values of the pa-
rameters for which the calculation was carried out (Table 1) - the condition of small potential 

is not satisfied: |𝑈| ≤
ℏ2

𝑚𝐿
. 

2.1 Fourier Method 
The second method for solving the stationary problem is based on expanding the desired 

wave function into a Fourier series (4), that defines the methods name. Substituting the series 
into the Schrödinger equation, we obtain the equation for the expansion coefficients. Bounda-
ry conditions (5) are also expanded (6).  

𝜓(𝑟, 𝜃) =
1

√2𝜋
∑ 𝐶𝑙𝜃(𝑟) 𝑒𝑥𝑝 (𝑖𝑙𝜃𝜃)

𝑁𝜃

𝑙𝜃=−𝑁𝜃

 (4) 
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𝐶𝑗𝜃(𝑟 → ∞) = 𝑖|𝑗𝜃|𝐽|𝑗𝜃|(𝑘𝑟) + 𝐹𝑗𝜃
𝑒𝑖𝑘𝑟
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𝑓(𝜃) =
1

√2𝜋
∑ 𝐹𝑗𝜃 𝑒𝑥𝑝 (𝑖𝑗𝜃𝜃)

𝑁𝜃

𝑗𝜃=−𝑁𝜃

  

In this paper we consider the solution of the equation for local axially symmetric poten-
tials, which can be approximately partitioned into constant-value steps (7). The proposed 
method can be used for potentials with no symmetry as well, but it would require to solve a 
large system of equations.  

𝑈(𝑟) =

{
 
 

 
 
𝑈1,   0 ≤ 𝑟 ≤ 𝑟1
𝑈2,    𝑟1 ≤ 𝑟 ≤ 𝑟2

…
𝑈𝑖 ,   𝑟𝑖−1 ≤ 𝑟 ≤ 𝑟𝑖

…
0,   𝑟𝑁−1 ≤ 𝑟𝑁

 (7) 

For one constant value of the potential 𝑈0 we obtain equation (8). The solution of this 
equation is a linear combination of Bessel functions of the first and second kind (9).  

−
1

𝑟

𝑑

𝑑𝑟
(𝑟
𝑑𝐶𝑗𝜃
𝑑𝑟

) + [
1

𝑟2
𝑗𝜃
2 − (𝑘2 − 𝑢0)] 𝐶𝑗𝜃 = 0 (8) 

𝑢0 =
2𝑚

ℏ2
𝑈0  

𝐶𝑗𝜃(𝑟) = 𝑃 𝐽𝑗𝜃 (√𝑘2 − 𝑢0𝑟) + 𝑄 𝑌𝑗𝜃 (√𝑘2 − 𝑢0𝑟) (9) 

For the first region 0 ≤ 𝑟 ≤ 𝑟1 the solution always contains only the Bessel function of the 
first kind since the solution must be finite at zero. 

2.2 Finite-difference method 

The finite-difference method has been developed to solve the time-dependent problem. 
The electron is replaced by the wave packet (10), where 𝑥0 is the initial position, 𝑎 is the ini-
tial dispersion. These are the additional free parameters, compared to the stationary case. 
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1
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ℏ2

2𝑚
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𝜏 =
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2𝑚 
𝑡  

There is a grid with variables x, y . 
𝑥 ∈ [0, 𝐿𝑥], 𝑗𝑥 = 1,… ,𝑁𝑥 

𝑦 ∈ [−𝐿𝑦 , 𝐿𝑦], 𝑗𝑦 = −𝑁𝑦, … , 𝑁𝑦 

The coordinate derivatives are replaced by the finite-difference approximation according 
to the equation (11), where 𝜓𝑗𝑥𝑗𝑦  is the value of the wave function on the coordinate grid. The 

probability current was calculated according to the formula (12), which is a finite-difference 
representation of (3). 

𝑖
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∗ − 𝜓𝑗𝑥−1𝑗𝑦

∗ )) (12) 

 



 
 

 
Figure 3 – Scheme of bypassing all grid points. 

 
The finite-difference time scheme is based on the asymmetric Sauliev scheme [14], which 

on the one hand is explicit, which simplifies the algorithm, and on the other hand is more 
stable and leads to less error than other explicit schemes. This scheme can be proven to be 
unconditionally stable, but in its asymmetric form (moving along the grid in one direction) 
doesn’t preserve the norm of the wave function. Switching directions at each step as it’s done 
here greatly improves the norm stability. 

A full description of the finite-difference scheme is given in Appendix 1. 

3 Simulation results and discussion  
Table 1 shows the values of the parameters for which the calculations were carried out. In 

this work several models of quantum rings and dots were investigated, 3D image and section 
of which are shown in Figure 4 (𝑈0 – characteristic value of the potential).  

The parameter values correspond to the experimental samples from the article [1]. In this 
study, a quantum well of 6 nm width was investigated, and the distance between the bottom 
of the first subband and the top of the quantum well was 0.08 eV. 

 

 
Figure 4 – Examples of investigated potential holes: a) as a Gaussian function,  

b) the difference of two Gaussian functions, c) as a cylindrical ring. 
 

Table 1. Values of the parameters for which the calculation was carried out. 

Quantum well width 𝑑, nm 6 

Effective mass of the electron, 𝑚 (𝑚0 is the mass of the electron in a 
vacuum) 

𝑚 = 0.067 𝑚0 

Distance between the bottom of the first subzone and the top of the 
quantum well 𝛥𝐸, eV 

0.08 

Electron energy 𝐸, eV 0.01 ÷ 0.1 
The depth of the potential pit 𝑈0, eV -0.2 

Outer ring radius 𝑅1, nm 30 ÷ 100 

Inner radius of the ring 𝑅2, nm (0.3 ÷ 0.7) 𝑅1  



 
 

3.1 Fourier method  

To solve the scattering problem with this method, it is necessary to divide the potential 
into a set of steps with a constant value (equation (7)). For a cylindrical ring we get 3 sections 
with a constant value of the potential. For the potentials in the form of Gaussian functions 
significantly more steps is required. An example of potential partitioning for a ring is shown 
in Figure 5. Along the radius-vector axis, the value of the function on the left boundary is tak-
en at equal intervals. The potential is equated to zero, when the value of the Gaussian func-
tion is less than 1·10-12. 

 

 
Figure 5 – Gaussian potential divided into columns with the same value. 

 
The calculation has been carried out for different energy values. Plots of the probability 

current dependence on energy for different potentials are shown in Figure 6. For rings a plat-
eau after a certain value of energy is noticeable, for the cylindrical form it appears earlier. For 
a quantum dot a smooth increase in the probability current is observed. The obtained de-
pendences qualitatively correspond to the behavior of the probability current in the case of 
quantum tunneling. 

Figures 7 and 8 show a comparison of the squared modulus of wave functions and the re-
duced 2D scattering cross section for reduced potentials for an energy of 0.5 eV. It can be 
seen that the cylindrical potential well is characterized by multiple centers of oscillations. 
This is due to additional reflections from the ring boundaries. For the Gaussian potentials 
this is not observed, which is due to the smoothness and continuity of the function.  

 

 
Figure 6 – Plot of probability current versus energy for different potentials: red line - Gaussi-

an ring with radii of 30 and 50 nm; green - Gaussian quantum dot with radius of 40 nm;  



 
 

purple - cylindrical ring with radii of 30 and 50 nm. 
 

 
Figure 7 – Square of the wave function modulus for potentials: a - Gaussian ring with radii of 

30 and 50 nm; b - Gaussian point with radius of 40 nm;  
с - cylindrical ring with radii of 30 and 50 nm. 

 
When comparing the scattering patterns, one can see that for a Gaussian ring there is a 

movement through both parts of the ring, followed by interference (Figure 7(a)). For a quan-
tum dot, the wave function is focused at the center of the nanostructure (Figure 7(b)). 

When comparing the scattering cross section, forward scattering mainly occurs for all 
three cases. For the Gaussian ring, additional maxima located close to zero. This corresponds 
to the interference of the parts of the wave function coming out of the potential well (Figure 
8(a)). For a cylindrical ring we see smaller maxima at some distance from zero (Figure 8(c)), 
they correspond to the parts of the wave function that did not fall into the well. For the quan-
tum dot the central maximum is greater in intensity than for the rings, and there are also 
small additional maxima (Figure 8(b)). 

 

 
Figure 8 – The reduced 2D scattering cross section for the potentials: a - Gaussian ring with 

radii of 30 and 50 nm; b - Gaussian point with radius of 40 nm;  
с - cylindrical ring with radii of 30 and 50 nm. 

 
The problem of scattering on a disk-shaped barrier was solved in the paper [11]. The Fou-

rier method given above is also suitable for such a problem, which allows us to compare the 
results. Qualitatively and numerically the solutions coincide, the squares of the modulus of 
wave functions and the reduced 2D scattering cross sections were compared: 𝜎 = 𝑘|𝑓(𝜃)|2. 

The program with the implementation of this method is written in R, the system of linear 
equations for the expansion coefficients is solved using the built-in function solve(). The visu-
alization of the square of the modulus of the wave function is done using the ggplot2 library: 
an image is created from the given array with the values of the function. 

 
 
 
 
 



 
 

3.2 Finite-difference method 

 

 
Figure 9 – The motion of the wave packet (the square of the wave function modulus)  

during scattering on a Gaussian quantum ring. 
 
The finite-difference method was developed for a time-dependent problem. Examples of 

the results of the scattering problem are presented in Figures 9-11 for the cylindrical and 
Gaussian quantum ring, Gaussian quantum dot, respectively. It can be seen that for the quan-
tum ring the wave packet is divided into two identical parts, while for the quantum dot the 
scattering is focused inside the nanostructure. 

The program for this method is written in the Rust programming language. As a result, 
we obtain images of the potential and position of the wave packet at several points in time. To 
visualize the motion of the wave packet, a custom function was implemented that translates 
the values of the square of the modulus of the wave function on the grid into integers from 0 
to 99 with known maximum and minimum values. They are correlated with color values from 
a given palette of 100 colors. 

In Figures 9-11 the size of the calculation area is 500 nm (the x axis) by 300 nm (the y ax-
is). 

 

 
Figure 10 – The motion of the wave packet (square of the modulus of the wave function) at 

scattering on a Gaussian quantum dot. 
 



 
 

 
Figure 11 – Motion of the wave packet (square of the wave function modulus) when scattering 

on a hole in the form of a ring with radii of 30 and 50 nm. 
 
A comparison of the results obtained by the Fourier method and the finite-difference 

method is shown in Figure 12. The pictures are similar: the main centers of oscillations and 
the position of parts of the wave packet, their shape and direction coincide. The finite-
difference method produces a sequence of images with a scattering picture with some time 
step. Because of this the states may not coincide. 

 

 
Figure 12 – Comparison of the Fourier method (left) and the finite-difference method (right): 

a - for a Gaussian ring; b - for a Gaussian point; c - for a cylindrical ring. 



 
 

4 Conclusions 
The Fourier method and the finite-difference method both cope very well with solving the 

problem of two-dimensional electron scattering on the considered potentials. Visualization of 
the wave function and probability current confirms the correctness of the developed pro-
grams by comparing the visualized results with other existing works and with each other. The 
obtained images of the quantities sought show that the results of both methods are physically 
meaningful and consistent with each other. 

The results of the Fourier method for another problem were compared to the article [11] 
and found to be in agreement. A solution for centrally symmetric potentials has been devel-
oped. But the method is not limited to this condition. For an arbitrary form of potential, it is 
necessary to solve a large system of equations. The only requirement for using this method is 
to divide the potential into several piecewise constants.  

The developed finite-difference method is suitable for any shapes and positions of the po-
tential. To solve the problem, it is necessary to specify its values on the coordinate grid. For 
the developed method, the most important thing is the ratio of intervals between neighboring 
grid points for the three variables. Even though the Sauliev scheme for the Schrödinger equa-
tion can be proven to be unconditionally stable, in practice a sufficiently small time interval is 
required for the computational scheme to converge.  

When using wave packets to model scattering, one needs to consider the widening of the 
wave packet as it moves. The speed of the widening is inversely proportional to the initial 
width. Thus, two free parameters appear - the initial position of the wave packet and the ini-
tial width (dispersion), which require careful selection. 

The obtained solutions demonstrate that scattering on a quantum ring devides the wave 
function into two equal parts. For the quantum dot we see the focusing of the wave function 
inside the nanostructure. 
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Appendix 
To solve the non-stationary problem, the time grid is also introduced: 

𝜏 ∈ [0, 𝑇], 𝑛 = 0,… ,𝑁𝑡 

𝛥𝜏 =
𝑇

2𝑁𝑡 + 2
 

As indicated in Figure 3 in the computational scheme, the motion goes in four directions. 
The equation for the wave function of each grid point for each direction is (A.1-A.4), where 
the index on top denotes the time step, 𝑢𝑗𝑥𝑗𝑦 is the potential value on the coordinate grid. The 

time derivative and the value of the wave function at the required point of the grid are written 
out according to the Sauliev finite-difference scheme [14].  

 

𝑖
𝜓(2𝑗𝑥−1)𝑗𝑦
(2𝑛+1) − 𝜓(2𝑗𝑥−1)𝑗𝑦

(2𝑛)

𝛥𝜏

= −
𝜓(2𝑗𝑥−2)𝑗𝑦
(2𝑛+1) − 𝜓(2𝑗𝑥−1)𝑗𝑦

(2𝑛+1) −𝜓(2𝑗𝑥−1)𝑗𝑦
(2𝑛) + 𝜓(2𝑗𝑥)𝑗𝑦

(2𝑛)

𝛥𝑥2

−
𝜓(2𝑗𝑥−1)𝑗𝑦−1
(2𝑛) − 𝜓(2𝑗𝑥−1)𝑗𝑦

(2𝑛) − 𝜓(2𝑗𝑥−1)𝑗𝑦
(2𝑛+1) + 𝜓(2𝑗𝑥−1)𝑗𝑦+1

(2𝑛+1)

𝛥𝑦2

+
1

2
𝑢(2𝑗𝑥−1)𝑗𝑦 (𝜓(2𝑗𝑥−1)𝑗𝑦

(2𝑛+1) + 𝜓(2𝑗𝑥−1)𝑗𝑦
(2𝑛) ) 

(A.1) 



 
 

𝑖
𝜓(2𝑗𝑥)𝑗𝑦
(2𝑛+1) − 𝜓(2𝑗𝑥)𝑗𝑦

(2𝑛)

𝛥𝜏

= −
𝜓(2𝑗𝑥−1)𝑗𝑦
(2𝑛+1) − 𝜓(2𝑗𝑥)𝑗𝑦

(2𝑛+1) − 𝜓(2𝑗𝑥)𝑗𝑦
(2𝑛) + 𝜓(2𝑗𝑥+1)𝑗𝑦

(2𝑛)

𝛥𝑥2

−
𝜓(2𝑗𝑥)𝑗𝑦−1
(2𝑛+1) − 𝜓(2𝑗𝑥)𝑗𝑦

(2𝑛+1) − 𝜓(2𝑗𝑥)𝑗𝑦
(2𝑛) + 𝜓(2𝑗𝑥)𝑗𝑦+1

(2𝑛)

𝛥𝑦2

+
1

2
𝑢(2𝑗𝑥)𝑗𝑦 (𝜓(2𝑗𝑥)𝑗𝑦

(2𝑛+1) + 𝜓(2𝑗𝑥)𝑗𝑦
(2𝑛) ) 

(A.2) 

𝑖
𝜓(2𝑗𝑥)𝑗𝑦
(2𝑛+2) − 𝜓(2𝑗𝑥)𝑗𝑦

(2𝑛+1)

𝛥𝜏

= −
𝜓(2𝑗𝑥−1)𝑗𝑦
(2𝑛+1) − 𝜓(2𝑗𝑥)𝑗𝑦

(2𝑛+1) − 𝜓(2𝑗𝑥)𝑗𝑦
(2𝑛+2) + 𝜓(2𝑗𝑥+1)𝑗𝑦

(2𝑛+2)

𝛥𝑥2

−
𝜓(2𝑗𝑥)𝑗𝑦−1
(2𝑛+1) − 𝜓(2𝑗𝑥)𝑗𝑦

(2𝑛+1) − 𝜓(2𝑗𝑥)𝑗𝑦
(2𝑛+2) + 𝜓(2𝑗𝑥)𝑗𝑦+1

(2𝑛+2)

𝛥𝑦2

+
1

2
𝑢(2𝑗𝑥)𝑗𝑦 (𝜓(2𝑗𝑥)𝑗𝑦

(2𝑛+2) + 𝜓(2𝑗𝑥)𝑗𝑦
(2𝑛+1)) 

(A.3) 

𝑖
𝜓(2𝑗𝑥−1)𝑗𝑦
(2𝑛+2) − 𝜓(2𝑗𝑥−1)𝑗𝑦

(2𝑛+1)

𝛥𝜏

= −
𝜓(2𝑗𝑥−2)𝑗𝑦
(2𝑛+1) − 𝜓(2𝑗𝑥−1)𝑗𝑦

(2𝑛+1) −𝜓(2𝑗𝑥−1)𝑗𝑦
(2𝑛+2) + 𝜓(2𝑗𝑥)𝑗𝑦

(2𝑛+2)

𝛥𝑥2

−
𝜓(2𝑗𝑥−1)𝑗𝑦−1
(2𝑛+2) − 𝜓(2𝑗𝑥−1)𝑗𝑦

(2𝑛+2) − 𝜓(2𝑗𝑥−1)𝑗𝑦
(2𝑛+1) + 𝜓(2𝑗𝑥−1)𝑗𝑦+1

(2𝑛+1)

𝛥𝑦2

+
1

2
𝑢(2𝑗𝑥−1)𝑗𝑦 (𝜓(2𝑗𝑥−1)𝑗𝑦

(2𝑛+2) + 𝜓(2𝑗𝑥−1)𝑗𝑦
(2𝑛+1) ) 

(A.4) 

 
 


